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Abstract— Robotic pouring is an important step in improving
the safety, productivity and repeatability in the biotechnology
industry and generally increasing the effectiveness of robotics
in human based environments. In this work we present a
method to autonomously dispense a precise amount of uid
using only visual feedback without using precision pouring
instruments such as pipettes, syringes or pourers. We model
circular and rectangular pouring container geometries. We
prove that for square containers we can control the ow by
only observing the uid height in the receiving beaker. We show
a systematic approach using a hybrid control scheme that is
robust to the initial amount of uid in the pouring container and
inconsistent ow. Speci cally we present (a) a model for pouring
(b) a model based algorithm to drive a robot arm (c) visual
feedback for regulating the pouring rate. We demonstrate this . '
using the Rethink Robotics Sawyer manipulator and mvBluefox Fig. 1: Experimental setup using the Rethink Robotics

MLC202bc camera. Sawyer manipulator to pour precise amounts of water into a
beaker using vision for feedback control.

. INTRODUCTION

One of the main goals in robotics is to assist in repetitive,
laborious, and dangerous tasks. Precise pouring of uids can
easily fall under each of these categories, examples beingVision is also used for real time feedback by detecting
manipulation of hazardous biological uids, molten metal inhow much uid is currently in the pouring container, or in
the casting industry, or even the assembly of buffers artdansit. Mottaghi et al. present a method using learning to
solvents in wet lab research. In each of these exampleseatimate the volume of containers and the amount of uid
common requirement is that a speci ed amount of uid beinside them using vision [10]. Yamaguchi et al. present a
poured with precision to a desired amount. method using stereo vision and optical ow to track uids

To achieve these precise motions required for pourindpeing poured during ight between containers [11]. The most
researchers have used learning models to perform reinforgecent approach in [12] is the state of the art in liquid
ment and imitation learning to pour [1], [2], [3]. While perception because it tracks the liquid while it is poured as
effective, limitations of these methods are the number ofell as the amount in the container using a recurrent neural
trials required to learn the pouring task, reliance on empinetwork. Compared to our approach [12] is superior in the
ical results rather than on analytical guarantees of systeperception but more simplistic in the control and without
performance, and inability to generalize learned model. providing any analytical proof.

One approach to perform smooth pouring is to minimize oy proposed method extends previous work in that it is
sloshing of the liquid while pouring a predetermined traznaytically based and we provide a closed form expression
Jecto'ry. So_me researph proves to suppress S|03hln9 Whil§ the control input using a hybrid controller and feedback
pouring using a hybrid shape approach which consists gfearization. We also show that we are able to detect the
proportional gain, notch and a low pass lter [4], [5], [6], [7]. height of the uid using vision, and due to our pouring
In this qpproach, the control input consists of feed forwarg_ontainer design speci cations, we only need to observe
expression based on the proposed model, and the hybgg,g with the angle of the pouring container, the height
shape to mitigate sloshing during the pour [6], [7], [8]. Nod&yr mass of the uid in the receiving container and its
and Terashima tried to overcome the requirement for thgarivative. By using a minimum jerk trajectory for the uid
need of an analytical inverse of the dynamical function b}‘leight, we are able to ensure smooth motion for our end-
using a numerical look up table for the desired height [9tector and uid height [13]. The rest of the paper is
and corresponding input. In the above model based examp@@anized as follows, Section II-A describes the general
[8], [9] load gells were used to provide real time feedbaclﬁouring model. Section II-B presents our specic system
on poured uid mass. design and justi cation. Section 1I-C describes our method of
GRASP Lab, University of Pennsylvania, Pennsylvania, PA 19104\1llsua| feedback tp detef:t the L.“d helght.'Sectllon lll shows
Email: (kmonroe, queen, tdinesh, kostas, our results and discussion for implementing this method on
kumar)@seas.upenn.edu the Rethink Robotics Sawyer manipulator shown in Figure 1.
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Fig. 2: The Pouring Problem: For a fluid poured from con-
tainer « to container /3 with specified geometric parameters,
the goal is to pour a precise amount of fluid using visual
or weight feedback based on an analytical model and closed
form control.

II. METHODOLOGY
A. General Pouring Model

We propose a simple model to characterize smooth flow
between two open containers. We assume as in [7] that the
fall time of the fluid between the containers is negligible.
Consider a pouring container « and receiving container [3,
with respective volumes V,,, Vj respectively as shown in
Figure 2. For container 3, the height of fluid hg and cross
sectional area Ag(zg) parameterized by the height in the
body fixed frame coordinate, together they define the volume

hg
Vs = Ap(zg)dzgs. ()
For the pouring container ¢, the maximum volume of the
container is defined as V,, = fOH“ Aq(za) as shown in Figure
2, where H, is the height of the container, and A,(z4) is
the cross sectional area parameterized by the body frame
coordinate. When container « is rotated by angle 6, there
will be a volume of the fluid above the pouring lip V7, o, and
volume below the pouring lip V; ., separated by a surface
area Ay (0) as shown in Figure 2. The height of the fluid
above the lip is defined as hr, o, and, for small heights, the
volume is approximated as in [8], [9] by

VL,a =~ hL,aAs,a(0)~ (2)

The volume below the surface can be found by integrating
the cross sectional area from the base of the container to the
dividing surface A; ,, which defines the volume V;

Vvs.,a - /Aa(za)dzow (3)

The dividing surface A, is a function of the angle 6,
container geometry and volume of fluid below the surface
Vs.o. Assuming the only degree of freedom is ¢, then
0, its derivative w = 6 or higher order derivatives must
be controlled to produce the desired flow rate and poured
volume.

Container «

Fig. 3: Pouring geometry used to derive analytical model.

The flow rage between the two containers « and 3 is
defined as ¢[™]. In relation to the respective volumes, the
flow rate is defined by

q= V[ﬁ' = _Va = _(VL,a + Vs,u)- “4)

By expanding this differentiation based on transient terms
for container «, the flow rate (4) becomes (5). Note that the
partial derivatives of A, ., Vs o are required as they are not
explicitly a function of time

7 aAQ «@ 8V9 «
q= _hL,aAs,oz - hL,a —807 w — 897 w
0Ag(h .
= ( Ag(hg) + hgﬂ hs. (5)
Ohg

To express hr o, we define the area of the pouring mouth
as A; = hL,aLL,a(hL,a)s where LL,a(hL,a) is the line
of the opening of the mouth at varying heights (as shown
in Figure 3 where in this case it is a constant). We note
that the height Ay, , is related to the flowrate by Bernoulli’s
principle % + gz + £ = const. where v, z, P,p are the
fluid velocity, height, pressure and density respectively at a
particular point in the steady, streamline flow. We consider
Bernoulli’s principle acting on volume V7, . The fluid at
the top surface of this volume has no velocity, whereas the
volume at the bottom (height hy, . below the surface) has a
velocity V = /2ghy, o As flow rate is defined as q[de] or
[m? - ], we can integrate over the pouring area to obtain
the flowrate

hL,a
qg=Ar(h)v(h) = / Ly, o(h)\/2ghdh. (6)
0

By differentiating this with respect to time, we can obtain
an expression for }.LL’a in terms of flow rate ¢,q. Given
these fundamental equations, we consider different container
designs to ensure effective state observation, system model
simplicity and ultimately control.

B. Specific Pouring Model Using Rectangular Container
Geometry

Design considerations for the pouring container « include
the pouring lip and container geometry. The terms that are



Fig. 4: We use the Rethink Robotics Sawyer manipulator
to precisely pour colored water into a beaker using visual
feedback from a mvBluefox MLC202bc camera.

(@) (b)

Fig. 5: Robustness of our vision method to sloshing in fast
trajectories, tracking and foreground images. The height is
estimated as minimum of purple and white rings (K-means

tﬁW Ir_at\e/ Q(?L): ), dividing areaAs; (), and volume below jyster centers), in Figure 5a estimated height is the white
e lip Vs . ri

ng.
Considering three cases: a rectangular lip where the Iengthg

is constant, v-shaped lip that has an opening angland

circular lip shape, where the entire opening has a raRlius

directly related to these factors are the lip length (h.. ),

the lip shape equations become differentiation with respect to time produces
Li et (D)= LL;alpha (7)
L nape (h) = 2hcos(;) ®) Asgare = abitan( )secl ) e
p__2 As rect = abtan( )sec()!: (18)
Lice (N)=2 h(2R h): C)

The ow rat.e q for circular and rectangulgr lip gepmetries-l-he volume of uid below the dividing surfaces. is shown
are shown in (10), (11) and are found by integrating (6) i, (19) for rectangular geometry. Note that while other ge-

Goot = 2Ly 2gh?. (10) ometries can be found, this volume is straight fqrward. U_smg
3 P : the geometry notation shown in Figure 3, with container
e = 41§g 128R5 12(R3hf; width W , lengthl , total heightH
+20R%h%.  +30Rh{.  9np. (12) Z, ZypyZw
Differentiating these ow rates with respect to time producesVs: rect = o o o dxdzdy
_ P— 1 Z, Zy,
Geor = L 20N By, (12) =  WH(ydy= W (Hp ytan( ))dy
4 29 3 212 0 0
Girc = 24R°h; +60R*h{. 2
15 =WHI —W tan( ): (19)
+120Rh].  45nf (13) 2

Note that by substitutindn.. from (10) into (12) we can

express (12) as The derivative with respect to time produces

1
3

L 520 *q iq: (14) Vo ret = '2\2’ sed( )!: (20)

[V \N]

I:1-L;:

For the dividing ared\s. , we consider two cases: a square
and circular container. In both instances the cross sectional
area is constant in body franze. The dividing areds. is
de ned to consist of a major and minor axé&g b, where
rotation occurs about the minor axis In the case of a
) . ) . (1).

circular container the area of an ellipse &, Hence the

respective areas are shown in (15), (16), whatés the ~ Proposition 1:By using an open, rectangular pouring
elongated axis as a function of the angle container as shown in Figure 3, and container with
constant cross sectional aréa, we can represent (5) in
As;cre = @b= ab sec() (15)  terms of only transient variablds :h : ;! .

As et = ab= absec(); (16) Proof: Using equations (7), (10), (12), (14), (16), (18),

Given these parameterizations, we will now show that
the design con guration in Figure 3 allows for a concise
representation of the dynamical system in (5) in Proposition



(20) assuming constart , (5) becomes
!

23 2 L1
q= 3 L9 fq g (W sec()
!
3 * 2z 12 |
5 L9 sgr (Wl tan()sec()!)
1ZW
t— se( )!: (21)
Solving for g produces Equation (22)
1, 2 1 4 (a) (b)
= 3°L¢ g3W I sec()ge , , , ,
3 ’ Fig. 6: Using background subtraction, Sobel gradient detec-
> tan( )q! tion and K-means clustering (Figure 6a) we are able to track
1 the top of the uid for feedback control. In Figure 6b the
. g | sec()Lé g (22) 9oal was to pour 100ml.
using the relation in (23) we obtain the relation between
andg (23) ® which takes the general form= f (x)+ g(x)u. To determine
g=A h : (23) the region on which this is feedback linearizable we must

determine the conditions of full rank for the matri¥
Substituting Equation (23) and = A h into Equation de ned in (30), wheread; g(x) represents the adjoitt; g]
(21) produces Equation (24) whose transient terms are onflfe bracket). And is also feedback linearizable if the span

h;h;;!. M 's vectors are involutive
h = 37 giw I sec()ATh M= g(x) adg(x) ad?g(x) : (30)
§tan( )1 The matrixM has full rank wherx, 6 0, meaning the height
2 ’ must be changing. Also we can see by inspection ga}
3 3 2 4, 2 1 is only left invertible wherx; 6 5 or x3 6 5. Hence we
+ g | secOLy g°A® R (24) propose the following hybrid controller
We de ne Qx( ); Qz( ); Qs( ) 29C’( - T(x) x280andxs 2 ( 3i5)
u=_ sgn(xs) 1 x2=0 andx32 ( 5;3) (31)
Q)= 3FL{ gtW I sec()  (25) 0 X2 62 7i3):
3 where the domain conditions here serve as hybrid control
Q)= 2 tan( ) (26) guard and reset function constraints, and these functions are
3 1 ., an identity map. Using feedback linearization the system
Qs( )= 3 | seq )L} g7; (27) reduces to a second order ordinary differential equation, and
solving for the desired state; will exponentially approach
which simpli es (24) to the desired point also i for positive proportional and

_ 14 £.3 . derivative gainsK;K4. We de ne the term to be this
ho=Qu()AR + Qo )b +Q3()A *h* 1 (28) jnput, and have it consist of a feedback and feed forward
m term prescribed by the desired trajectoryxaft)

With these design parameters we have deriveq acomponent = o, oo + Kp(Xpges X1)+ Ka(Xzdes X1):  (32)
of the system dynamics, we now de ne the region on which _ _ _ o _
it is controllable and the hybrid controller used. The desired trajectory for the system is a minimum jerk

Theorem 1:For a experimental setup de ned in pro?osi_trajectory for the state; which de nesxges; X1:des; X1:des
tion 1, with system statesc;  X» X3 T_ h h wherexi.qes IS the feed forward term. We de ne a smooth,

and inputu = !, there exists a hybrid control input thatSingid .trajectory for the Uid. heig.ht by us_ing a 5th orpier

allows for control of the system in the domab : xs 2 polynomial. Such a polynomial with specied end points

(5 ) for statesx, starting inD characterizes a minimum jerk trajectory, and inherently
202 :

Proof: The full system dynamics based on (28) is minimizes the change in accelerations while respecting the

2 3 2 o 3 2 3  boundary constraints. The speci ed endpoints are the initial
X1 IX2) \ 0 ) height and nal height both with zero velocity and acceler-
4%25 = 4Q,(x3) A3 %3 O+ 4Qu(xs)x2 + Qa(xs)A 5xjO u; ation. These boundary constraints fully de ne the trajectory
X3 0 1 in closed form [13]. Therefore with (31), (32) we can track

(29) the speci ed trajectory in domain D. ]












